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ON THE THEORY OF BERGER PLATES* 

I.V. ANDRIANOV 

It is shown that the Berger equations can be obtained on the basis of a sequential 
asymptotic procedure. M. Berger /l/ proposed simple approximate nonlinear equations 
for rectangular and circular plates. The results of /l/ werelaterextendedtoortho- 
tropic plates /2/, membranes /3,4/, shallow spherical /4-8/ and cylindrical /8-lO/ 
shells. Equations of this type were also used to solve dynamical problems /ll-13/. 

The foundation for the Berger equations and the domain of their applicability haverepeat- 
edly been discussed in the literature /2,4,5,7-10,14-18/. Berger /l/ simply discarded the 
second invariant of the strain tensor in the expression for the potential energyon the basis 
that the numerical computations display its slight influence on the state of bending stress. 
Other authors performed the same operation taking little care about the foundation for similar 
simplifications, which sometimes resulted in false results. Thus, the erroneousness of the 
simplified dynamical equations obtained in /12/ for shallow spherical shells is shown in /13/. 
Hence, it is important to arrive at equations of the Berger type without utilizing the hypo- 
thesis about the smallness of the second invariant of the strain tensor. 

1. We write the nonlinear equations of motion of a rectangular plate 

I;,_+ (1 - v) (0.5 t?;* * - &} -R(l - v")e-'rr..' = 0 

I;,# + (1 - Y) (0.5 E;* x - e; ") - p (1 - Y") e-lu..' = 0 
D (1 - v*) V'IU' - EL [(I lwwi*, + (~I’~.,)*, + 

(1 - V) l(%‘wx’)~x + (%‘W” ‘) - 0.5 (q*‘w,yILx - I” 
0.5 (en’w,x’),,,)) + p (1 - Y*) hw’ = 0 

I,' = e,' + e,', a,' = u.X' + 0.5 (w,I')*, Q' = F.yl + 0.5 (lu,y))2, 

el*=u:"+v:.+w:xw:, 

(1.1) 

Here 1,' is the first invariant of the strain tensor, E,p are the Young's modulus and the 
density of the plate material, Y is the Poisson's ratio, z,y are orthogonal Cartesian coordin- 
ates, ~1, V' are displacements in the directions of the r,y axes,. w)' is the normal deflection, 
the dot denotes differentiation with respect to the time t, and the subscripts t and y dif- 
ferentiation with respect to the corresponding variable. 

The appropriate boundary conditions should supplement (1.1). For instance, let 

U = (IL', D', ~3') = 0, w,%' = 0 as z = 0, a; (1.2) 
U = 0, ~3.~' = 0 as y = 0, b 

The terms in the braces in (1.1) are obtained because of varying the second invariant of 
the strain tensor. 

2. We first turn to the spatially-one-dimensional case /19,20/ and examine the nonlinear 
vibrations of a rod. The Berger equation then agrees with the known equation obtained on the 
basis of the Kirchhoff hypothesis (neglecting longitudinal inertia) in /19/. As is shown in 
/22/, such an equation is obtained as one of the possible limit cases (for sufficiently large 
variability in the space variable) because of an asymptotic analysis of the initial system. 
Let us attempt to construct such an asymptotic even in this case by using e == Ir!?lrjb as a 

small parameter. We first perform the following change of variable 

.+$, ,,:+, ,=J/v.t. "=T 

Equations (1.1) are then rewritten in the fOllOWbIg form (the dot now denotes different- 

iation with respect to T) 

*Prikl.Matem.Mekhan., vo1.47,No.l,pp.174-176,1983 

142 



I I,E + (1 - Y) (0.5 E1l,,, - e2,e) - u" = 0 

I 1, r) + (I - V) (0.5 E12, E - e,, ,,) - u” = 0 

VW - E-2 ((l,W,k),, + (I,~,,),~ + (1 - v) IW,&g + W,I),II - 

0.5 (E,plC,tl),E -0.5 (e,rw,t),,l) + e-%u" = 0 
I, = p1 + E?, s1 = u.5 + 0.5 (u~,~)*, Ez = u,n + Q5 (w,,,)'> arz = I‘,,, + 

Y.E + u',EW?l 
c a: 

vr=,E*+yp 
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(2.1) 

The system (2.1) is nonlinear, hence it is impossible to introduce the concept aboutvari- 
ability of the required functions just as simply as in the linear case /21/. Following the 
ideas in /22,23/, we represent the displacement vector in the form 

u = u (E=e (E, rl)? E, 9, 8) (2.2) 

As usual, the exponent'a is now selected from the condition of non-contradiction of the 
appropriate limit systems /21/. In this case onesuchvalue is a= -0.5. We substitute (2.2) 
into (2.1) and write the limit SyStem (E-. 0). Here we consider the function 0 (E, n) as a new 
independent variable /22,23/ and take into account that 

We finally have 

a a --- 
ag _ ae +&&& +-$+C%,-g 

1,,~0,~+ 0.5 (1 -v) [u,as (0,,)a-~,~~0,~0, rl~ = 0 
~,,~e,, + 0.5 (1 -v) k.ae (O.E)*-~,eeO,EO,qi = 0 

w,asea [(0, #+ (0,,)?1?- ('i,ew,e (0,,+ e,,)) - 
1110, eet(0, $+ @,,)'I+ w"=0 

(2.3) 

There follows from the first two equations in (2.3) 

I 1,e = 
0 (2.4) 

Then the term in the braces dropsout of the last equation in (2.3). Now, if we return 
to the variables 3, y, t, we then obtain I, r=Il ,=O from (2.4). 
ary conditions (1.2), we hence determine ’ ’ 

Taking account of the bound- 

(2.5) 

Taking (2.4) into account, we obtain the Berger equation for the vibrations of a rect- 
angular plate 

h=V'w - 12V% + izp (i - VS) w” = 0 (2.6) 

from the last equation of (2.3) in the initial variables. 
It is possible to arrive analogously at (2.6) by set off from the Karman system of non- 

linear equations. 
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